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Abstract

Robot soccer game is one of the significant and
interesting areas among most of the autonomous
robotic researches. Following the humanoid soccer
robot basic movement and strategy actions, the robot is
operated in a dynamic and unpredictable contest
environment and must recognize the position of itself in
the field all the time. Therefore, the localization system
of the soccer robot becomes the key technology to
improve the performance. This work proposes efficient
approachesfor humanoid robot and uses one landmark
to accomplish the self-localization. This localization
mechanism integrates the information from the pan/tilt
motors and a single camera on the robot head together
with the artificial neural network technique to
adaptively adjust the humanoid robot position. The
neural network approach can improve the precision of
the localization. The experimental results indicate that
the average accuracy ratio is 88.5% underframe rate of
15 frames per second (fps), and the average error for
the distance between the actual position and the
measured position ofthe object is 6.68cm.

Keywords: Self-Localization, Humanoid Soccer Robot,
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1. Introduction

A good self-localization system cannot only make a
robot acquire the information quickly and accurately in
the whole field, but also makes an appropriate decision
correspondingly. For easy manipulation we can preset
all the locations in the field as a Cartesian coordinate
system, and the robot will self-localize itself by the
coordinate system. In recent years, the competition
fields of RoboCup [I] and FIRA Cup [2] become more
and more conformed to human environments. Fig. I
shows the RoboCup soccer fields for humanoid kid-size
of 2007 [3], 2008 [4], and 2009 [5], respectively. The
landmarks decrease from four to two (2007-2009). In
other words , the reference checkmarks for self-
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localization becomes less and less, and how to use less
landmarks and increase the degree of accuracy becomes
important issues [6]-[7].

Basically there are three types of techniques for
robot localization [8]. The first approach is based on the
stereo vision. This approach can obtain a lot of
information, however the distance between the target
and the camera is not accurate [9] and may reduce the
accuracy of localization. The second one is based on the
omni-directional vision. Although this method obtains
better features, the omni-directional device causes
geometry distortions to the perceived scene [10]. The
third one uses the monocular vision technique. It must
have robust features within a specific region [11]. This
work proposes a visual self-localization approach that
uses a single CCD camera and pan/tilt motors on the
robot head to fmd the robust features and to analyze the
environmental information for the RoboCup soccer field
of2009 [5].

The rest of this paper is organized as follows :
Section 2 presents the general localization methods and
encountered problems. The proposed self-localization
mechanism is described in Section 3, and the
experimental results are shown in Section 4. Finally,
Section 5 gives a brief conclusion.

(b)

Figure 1. The configuration ofRoboCup soccer field for
humanoid kid-size. (a) for 2007, (b) for 2008 and 2009.
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2. Robotic Vision Based Localization

The issue of the localization for humanoid robot
focuses on analyzing the probable position by itself on
the field. The key technology of the self-localization for
the robot is how to take the advantages of the
information of various sensors to match the position of
the robot. Because the perceivable ability of the robot is
restricted and the ambient environment is with
enormous interferences, it is difficult to make the robot
have efficient and more robust localization. During
localizing, owing to the restrictions of the performance
of various sensors and the interferences of the outside
environment, it may have uncertainties for the
orientation. The main factors are: 1) the dynamic
variance for the outside environment; 2) the
undependable information for the outside sensors (CCD
camera, electronic compass, gyroscope, ... , etc); 3) the
deviation of the inside sensors (the pan/tilt sever motors,
stepper motors, .. ., etc). These non-ideal elements lead
to reduce the localization precision. To solve the
mentioned non-ideal factors many researches tried to
fmd better ways to model the environments and
mathematic tools for simulation [12]-[13]. This paper
proposes an efficient mechanism to improve the
orientation precision. Therefore the humanoid robot can
recognize its position explicitly on the field, and further
it can proceed to the following soccer ball tracking and
strategic planning.

3. The Proposed Approach

In this section, the efficient self-localization
approach for humanoid robot is proposed. The main
issues are focused on the robot vision module. Together
with the image processing and trigonometric theorem,
the humanoid robot can fmd the rough positions by
itself. Later on, the proposed approach can help to
increase the accuracy of the position. The proposed
visual self-localization approach has five steps, and the
flow chart of the self-localization mechanism is shown
in Fig. 2. The details of the self-localization approach
are described in the following five subsections.

3.1. Establishment of the Coordinate System

If the coordinate of a geometric map is available, it
will be convenient to retain a lot of information in the
whole field. For easy manipulation of the self­
localization of a robot, the coordinate system of the
field must be established in advance. In this work,
before processing the localization, we must establish
two appropriate coordinate systems. One is called
"absolute coordinate system" on the field, and the other
is called "relative coordinate system" in the image.
There are four steps to establish the absolute coordinate
system: 1) to estimate the sizes of the field and robot; 2)
to fmd the interested position in the soccer field; 3)

according to the proportion of the robot in the field to
adjust the value in each block; 4) dividing the field into
several blocks with the same size and assigning the
interested position as the center block. The relative
coordinate system will store the interesting information
of the objects. Through these coordinate systems, the
location of the robot, landmark, and goal can be located
explicitly.

3.2. Landmark Detection

In order to the catch a stable feature, we treat the
landmark as the feature for localization. In the
initialization of the orientation, the robot keeps
searching the landmark until finding it. After finding the
landmark, the system will take the interested feature by
converting the image from RGB to HIS space. In order
to remove the influence of brightness, it takes the HS
space only. Finally, it will mark the upper left (XhY,),
upper right (Xz,Yz), lower left (X3,Y3) , lower right
(X4,Y4) , and center (Xc, Yc) for the landmark in the
image, as shown in Fig. 3.

Figure 2. Robot self-localization and object ball localization
flowchart.

Figure 3. The process to mark the upper left, upper right,
lower left, lower right, and center of the landmark .

We must adjust the feature to an appropriate position
in the picture frame for self-localization. For the
adjustment, the robot head keeps rotating horizontally
but still vertically, and (1) can help to search the feature
of the landmark:

{
XCb = Xca + P, if Xca <150 (1)
Xcb = Xca-P, if Xca > 170

where Xca is a pixel value for the horizontal direction,
Xcb the pixel value for the next image, and P a change
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3.3. Calculating the Distance between the Robot
and Landmark

Figure 4. The images recognized by the robot through the
CCD camera. (a) - (c) show the procedures of the robot to
search the characteristic point and move the vision angle
toward the object. (d) - (f) show how the robot head and

CCD camera move.
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Figure 6. Graph ofy = tanx.

technique of artificial neural network to find the
distance r, and the detail of this approach is described in
the following subsection.

3.4. Improvement of the Distance Precision

In the localization system, if we want to analyze the
information of the interesting features and the distance
exactly, we must model the visual system by
mathematics. However the visual localization system is
complex and non-linear, for simplicity the neural
network technique can be applied. By the neural
network approach, we need not know the exact
mathematic model of the visual system by simply
replacing the mathematic model by the neurons, and we
can still get the information of the interesting features
and distance [15]. So far several neural networks have
been proposed, such as back propagation neural (BPN)
network, self-organizing neural network,.. . , etc. Here
we use the technique of BPN network to find a more
accurate distance between the robot and landmark.

3.4.1. Back Propagation Neural Network
The mechanism of the BPN network belongs to

multilayer feed-forward networks and uses supervised
learning. The multilayer feed-forward network approach
deals with the non-linear relationships between the
input and output, and the supervised learning can
correct the values of the relationships. Because of these
network structures, the BPN network has the advantages
for higher learning precision and fast recall speed, and
therefore the BPN becomes the most popular neural
network module nowadays [15]. The block diagram of
the BPN network is shown in Fig. 7.

(t)(e)(d)

After obtaining a better feature, the distance between
the robot and feature can be found by the following
approach. At this moment, two data are obtained: the
specific angle "e" of the robot head and the height "h"
of the robot. According to Fig . 5 and the trigonometric
theorem, we can fmd the distance r as follows:

where Y 3a is a pixel value for the vertical direction, Y 3b

the pixel value for the next frame, and Q a change pixel
value as the robot head moves vertically.

If Xc is within 150-170 horizontal pixels and Y3 is
within 110-130 vertical pixels in the frame, the critical
feature information including boundary points and size
can be found . By this approach, it can obtain the head
pan/tilt angle of the robot. The robot forbids walking at
this moment until it loses the feature information and
then it terminates the self-localization procedure as
shown in Fig. 4.

pixel value as the robot head moves. The robot head
will not stop moving horizontally until Xc falls within
150-170 of horizontal pixels. Then (2) is used to
analyze the feature of the landmark:

{
Y3b = Y3a+Q, if Y3a < 110 (2)

Y3b = Y3a - Q, if Y3a > 130

Figure 5. The relationship of r, fJ, h,f(x, y), andf(x', y')
between the robot and landmark.

Because the tangent angle has serious variance near
k1t+1t/2, as shown in Fig.6, the distance r between the
robot and landmark is not accurate. In order to find a
more accurate r we propose an approach by using the
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Output LayerHidden layerInput Layer

b : the bias - .. : forward pass
\\~I : the weight between input and hidden layer r7l . .. .
\V11 = the weight between hidden and outpu; layer bl.J . activation function

Figure 7. The BPN network method.

The basic element of a BPN network is the
processing node. Each processing node behaves like a
biological neuron and performs functions. It sums the

(3)r=hxtanB
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Step 2: Initialize Wji and Wkj by random values.
Step 3: Select a suitable activation function from Fig. 9
and input the trained data to the selected activation
function. Then it calculates the output value Yj from the
hidden layer and outputs value Yk from the output layer.

(b)(a)

/(11)=-, I_II
+("" .,--------,

{
o If 11 <0

f( II)= 1 if 11 ,,= 0

~ ~rn ::
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values of its inputs, and this sum is then passed through
an activation function to generate an output. Any
differentiable function can be used as the activation
function, f. All the processing nodes are arranged into
layers and are fully interconnected to the following
layers. There is no interconnection between the nodes of
the same layer . In a BPN network, there is an input
layer that acts as a distribution structure for the data
presented to the network, and this layer is not used for
any type of processing. One or more processing layers ,
called hidden layer, will follow this layer ; the final
processing layer is called the output layer.

3.4.2. The BPN Network for Humanoid Robot
Localization

There are seven steps to improve the distance
precision by the BPN network, and the procedures are
shown in Fig. 8 [15].
Step 1: Prepare robust information including the
interesting features of Xc, Yc , and size , ... , etc. In the
picture frame, it sets the expectable distance value as
the objective function and then normalizes these data to
the appropriate values. The appropriate normalization is
referred to the activation function f as follows :

where y;is the output value of the nth layer, and it is

also the input value of the first layer. netJ is the weight

accumulative value for the output value of the (n-l )th
layer and is represented as follows :

n n n n-l n
netj = rWjiYi +bj . (5)

n n
Y . = f(net .).

} }
(4)

n .

(c) (d)
Figure 9. Four activation functions . (a) step function. (b)

saturating linear function . (C)sigmoid function .
(d) hyperbolic function.

Step4 : Calculate the error function E. In order to find
the optimum solution of E, we use the steepest descent
method approach, as shown in (6).

1 2E="21(dk - yk ) (6)

where W;i is the weighted connections between the jth

neuron in the nth layer and the ith neuron in the (n-l )th

layer, and bJ is the bias of the jth neuron in the nth

layer.

Select eno ugh
reliable a nd unique feature

mrormanon

Generate a set of
Iml1;11\\ e ig ht and bras

Figure 8. The procedure for improving precision.

where dk is the kth neurons objective output value, and
Yk is the output value of the kth neuron at the output
layer. In this step we try to reduce the difference
between the input and output values.

Step 5: Calculate 0; , k = 1,..., K , in the output layer as

(7), and oJ, j = 1, ..., L, in the hidden layer as (8)

respectively.

8; =(d; - y;)/(net;). (7)

0;=[~otlW. ]/(net;l. (8)

Step6 : Correct the weight (Wk/p +1) = Wig(p) +

170; (p)yJ-l (P)) in the output layer and the weight

(Wji(P + 1) = Wji(p) + TloJ (p)yf-l (P)) in the hidden

layer, where p is the module of group p (the training
module includes input and output values); 77 is the
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learning rate, and generally the value is between 0 and I.
Step7: Go back to Step 3 and then repeat the calculation
and correction until the objective function reaches the
stop standard or the largest training times.

By the above procedure, we can obtain a very
accurate distance between the robot and the landmark.
If the distance is too large to be in the accuracy range,
the robot will search the other landmark.

3.5. The Absolute Coordinate of the Robot

The pan motor on the robot head can be used to
estimate the direction of the robot. The angle "<I>" of the
motor is rotated in clockwise, and the range is between
0° and 180°, as shown in Fig. 10. According to Fig. 10,
the location of the robot can be derived by (9):

t'=x+rCfJ>tjJ ,if the angle of the compass is 0' to 359' (9)

'=y-rsintjJ

Figure 10. The direction of the robot in the soccer field.

4. Experimental Results

4.1. The Experimental Environment and the
Robot Vision Module

The experiment is based on the feature of the
competition field for 2009 RoboCup soccer humanoid
league. The field contains two goals and two landmark
poles, as shown in Fig. I(b). Because of the width of the
robot shoulder is 25cm, we set the unit length of the
coordinate to be 30cm in length and the field can be
divided into 29x 17 blocks as shown in Fig. II. The
experimental robot vision module comprises a single
CCD camera and pan/tilt motors as shown in Fig. 12.
The CCD camera is the Logitech QuickCam® Pro [16]
for Notebooks, and the pan/tilt motors are ROBOTIS
Dynamixel RX-28 [17].

4.2. The Precision Simulation of Distance
Measurement

For the BPN network approach, we need data for the
three neurons in the input layer (the tilt angle, the
landmark Ymin, and the size of the frame) and one in
the hidden layer. The simulation result indicates that the
most suitable neurons are ten as shown in Fig. 13. The
learning rate is 0.1 and the output layer is one. By
training these data, the precision can reach 2.44cm as
shown in Fig. 14.

Figure 11. The RoboCup soccer field. The original field
with 29x 17 blocks [5].

Figure 12. The robot vision module.

1

Figure 13. The number of the neuron error rate from 1 to 20.

Figure 14. The error between the simulated and realdistance
is about 2.44cm.

4.3. The Actual and Measured Distance

According to the experimental data, Fig. 15 shows
the errors of the distance between the original and
improved approach. The black line is for the actual
distance, the red dotted line for the improved approach,
and the blue dotted line for the original method.
According to Fig. 15, the average error for the improved
approach is 6.68cm and that of the original method is
87.23cm. Therefore, the proposed approach improves
the accuracy significantly. Since the left and right sides
of the field are with the same situation (Fig. II),
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without loss ofgenerality this experiment focuses on the
right side of the field. Fig. 16 shows the measurement
results of various locations of the robot, where the stars
indicate the various locations of the robot. Table 1
shows the comparisons of the correct rates of the actual
distance and the measured distance for the original
method and the improved approach. The accuracy rate
for the improved approach is 88.5%; on the other hand
that of the original method is only 71.0%.

1_ T ho •••, 0 ... . " ,. . I
.... - . - . Tto. V n lonprc"".d Ohl.nce_

- - - T h e I",p.ove d O.atence.

Figure 15. The error rates of the distance between the
original and the improved approach.

Table 1. Comparisons ofthe correct rates for different
methods.

Totalexperimentalpoints = 130
Situation Correct Incorrect Accuracy Rate

Original Method 92 38 71.1%
Improved Approach 115 15 88.5%

Figure 16. The various locations of the robot to measuring
the distance between the robot and the landmarks.

5. Conclusions

This work proposes an efficient approach of self­
localization for humanoid robot by the BPN technique.
The proposed method can increase the precision of
localization significantly. Due to the simple processing
operation the processing speed can be as high as 15 fps.
Upon the restrictions of the RoboCup soccer field, this
work uses at most two landmarks for self-localization.
Besides, we apply the adaptive two-dimensional head
motion to have the localization to be elastically. Since
the robot vision module can measure the distance
between the robot and the landmark more accurately,
the robot can localize itself on the absolute coordinate
more precisely. The simulation results indicate that it is
an efficient localization approach.
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